超级计算器使用说明_超级计算机天气预报怎么设置
1.为什么电脑上的天气预报这么不准 哪里有准的如题 谢谢了
2.天气预报是怎么“算”出来的
3.现代化的天气预报有哪些方式?
现代天气预报有五个组成部分:
收集数据
最传统的数据是在地面或海面上通过专业人员、爱好者、自动气象站或者浮标收集的气压、气温、风速、风向、湿度等数据。世界气象组织协调这些数据采集的时间,并制定标准。这些测量分每小时一次(METAR)或者每六小时一次(SYNOP)。
使用气象气球气象学家还可以收集上空的气温、湿度、风值。气象气球可以一直上升到对流层顶。
气象卫星的数据越来越重要。气象卫星可以采集全世界的数据。它们的可见光照片可以帮助气象学家来检视云的发展。它们的红外线数据可以用来收集地面和云顶的温度。通过监视云的发展可以收集云的边缘的风速和风向。不过由于气象卫星的精确度和分辨率还不够好,因此地面数据依然非常重要。
气象雷达可以提供降水地区和强度的信息。多普勒雷达还可以确定风速和风向。
数据同化
在数据同化的过程中被采集的数据与用来做预报的数字模型结合在一起来产生气象分析。其结果是目前大气状态的最好估计,它是一个三维的温度、湿度、气压和风速、风向的表示。
数据天气预报
数字天气预报是使用电脑来模拟大气。它使用数据同化的结果作为其出发点,按照今天物理学和流体力学的结果来计算大气随时间的变化。由于流体力学的方程组非常复杂,因此只有使用超级计算机才能够进行数字天气预报。这个模型计算的输出是天气预报的基础。
输出处理
模型计算的原始输出一般要经过加工处理后才能成为天气预报。这些处理包括使用统计学的原理来消除已知的模型中的偏差,或者参考其它模型计算结果进行调整。
过去气象学家必须自己做处理工作,今天24小时以上的天气预报主要是使用多种不同模型后对其结果进行综合。气象学家还必须分析预报出来的模型数据来使最终用户能够理解它。此外天气预报的模型一般分辨率不是特别高。当地的气象学家还必须通过当地的经验在涉及地区性的影响,使得当地的天气预报更加精确。不过随着天气预报模型的不断精密化这个工作量越来越小了。
展示
对于最终用户来说天气预报的展示是整个过程中最重要的。只有知道最终用户需要什么信息、如何才能将这些信息易懂地传达给最终用户才能完成这个任务。
为什么电脑上的天气预报这么不准 哪里有准的如题 谢谢了
收集数据
最传统的数据是在地面或海面上通过专业人员、爱好者、自动气象站或者浮标收集的气压、气温、风速、风向、湿度等数据。世界气象组织协调这些数据采集的时间,并制定标准。这些测量分每小时一次(METAR)或者每六小时一次(SYNOP)。 使用气象气球气象学家还可以收集上空的气温、湿度、风值。气象气球可以一直上升到对流层顶。 气象卫星的数据越来越重要。气象卫星可以采集全世界的数据。它们的可见光照片可以帮助气象学家来检视云的发展。它们的红外线数据可以用来收集地面和云顶的温度。通过监视云的发展可以收集云的边缘的风速和风向。不过由于气象卫星的精确度和分辨率还不够好,因此地面数据依然非常重要。 气象雷达可以提供降水地区和强度的信息。多普勒雷达还可以确定风速和风向。
数据同化
在数据同化的过程中被采集的数据与用来做预报的数字模型结合在一起来产生气象分析。其结果是目前大气状态的最好估计,它是一个三维的温度、湿度、气压和风速、风向的表示。
数据天气预报
数字天气预报是使用电脑来模拟大气。它使用数据同化的结果作为其出发点,按照现在物理学和流体力学的结果来计算大气随时间的变化。由于流体力学的方程组非常复杂,因此只有使用超级计算机才能够进行数字天气预报。这个模型计算的输出是天气预报的基础。
输出处理
模型计算的原始输出一般要经过加工处理后才能成为天气预报。这些处理包括使用统计学的原理来消除已知的模型中的偏差,或者参考其它模型计算结果进行调整。 过去气象学家必须自己做处理工作,现在24小时以上的天气预报主要是使用多种不同模型后对其结果进行综合。气象学家还必须分析预报出来的模型数据来使最终用户能够理解它。此外天气预报的模型一般分辨率不是特别高。当地的气象学家还必须通过当地的经验在涉及地区性的影响,使得当地的天气预报更加精确。不过随着天气预报模型的不断精密化这个工作量越来越小了。
展示
对于最终用户来说天气预报的展示是整个过程中最重要的。只有知道最终用户需要什么信息、如何才能将这些信息易懂地传达给最终用户才能完成这个任务。
天气预报是怎么“算”出来的
天气预报也是要数据的,既然要数据,那就得有观测站。中国的领土有960万平方公里,观测站算上最简陋的一共加起来也不会到五位数,那么这说明什么呢?这说明我们不可能知道每个地方每时每刻的气温,湿度,风向等数据的值,这说明一个观测站的数据要代表一片区域的情况,但是这片区域的天气情况会是一模一样的吗?答案显然是否定的,说不定东边下雨,西边是艳阳天。预报所用的数据不准的话,那么做出的天气预报的准确度可想而知。那如何解决这个问题呢? 那就是观测站的加密,但是这会消耗大量的人力物力,显然不是想建观测站就能建的。 现在预报方法主要是数值预报加上人为修正。数值预报是什么呢?简单的说就是把运动方程编程放到计算机里面,再把观测数据导入进去,用计算机运算未来时刻的天气情况。或许有的人会说这有什么,看起来挺简单的样子。但是数值预报的运算量实在太大,有多大呢?世界上最先进的计算机,就是新闻上会经常说的每秒多少千万亿次的那种计算机,除了在军事上运用,最需要的也就是气象局了。如果没有运算速度快的计算机,那后果很有可能就是你要算明天的天气情况,但是运算结果却要等到后天才能出来,那这样的数值预报还有什么意义呢。而且数值预报的结果也不是把每个地方都能算出来,它同样是用一个点来代表一片区域。而且由于一些原因,两个点之间的距离也不可能无限的减小。 造成天气预报不准的原因还有很多很多。
现代化的天气预报有哪些方式?
收集数据
最传统的数据是气压、温度、风速、风向、湿度等数据。由专业人士、爱好者、自动气象站或浮标在地面或海面收集。世界气象组织协调数据收集的时间并制定标准。这些测量每小时(METAR)或每六小时(SYNOP)进行一次。
气象数据变得越来越重要。气象卫星可以收集世界各地的数据。他们的可见光照片可以帮助气象学家研究云的发展。他们的红外数据可以用来收集地面和云顶的温度。通过监测云的发展,我们可以收集云边缘的风速和风向。但是气象卫星的精度和分辨率还不够好,所以地面数据还是很重要的。
数据同化
在数据同化过程中,收集的数据与用于预测的数字模型相结合,以产生气象分析。它是对大气状态的最佳估计,是温度、湿度、气压、风速和风向的三维表示。
数据天气
根据物理学和流体力学的结果计算大气随时间的变化。
输出处理
模型计算的原始输出通常可以在变成天气预报之前进行处理。这些处理方法包括利用统计学原理消除已知模型中的偏差,或者参考其他模型的计算结果进行调整。
重要工具
天气预报的重要工具是天气图。天气图主要分为地面和高空。天气图上密密麻麻地写满了各种天气符号,都是根据各地的天气代码翻译后填写的。
每个符号代表一种特定的天气。
代表云的符号,如卷云、卷积云、卷层云、高积云、雨层云、积雨云等。
表示天气现象的符号有:雷暴、龙卷风、大雾、连续大雨、小雪和小阵雨等。
此外,还有表示风向、风速、云量、气压变化的符号。
所有这些符号都以统一的格式填入各自的地理位置。这样,在一个广阔的区域内同时观测到的所有气象要素,如风、温度、湿度、气压、云、阴、晴、雨、雪等。,可以填写在天气图中。从而形成代表不同时间的天气图。有了这些天气图,预报员可以进一步分析处理,用不同颜色的线条和符号显示分析结果。
地面天气图的分析内容包括:圈出重要天气现象(如降水、大风、暴风雪等)的区域范围。),画出冷锋、暖锋、准静止锋的位置,画出全图的等压线,标出低压和高压的中心和强度。经过这样的分析,我们可以从图中清楚地看到当时的气压情况:哪里是高压,哪里是低压,哪里是冷暖空气的对抗区。
高空天气图中填充的气象要素是同一等压线面上所有点的高度,所以通过分析画出相隔一定值的等高线。等高线画出来后,我们就可以看到当时的气压情况:哪里是低压的槽,哪里是高压的脊。然后画等温线,标出冷暖中心。从冷暖中心、低压槽、高压脊的配置,预报员可以对未来的气压形势作出大致的判断。
随着气象科学技术的发展,一些气象台站利用气象雷达、气象卫星、电子计算机等先进的探测工具和预报手段,提高气象预报水平,取得了显著成效。据介绍,自1966年以来,世界各地热带海洋的台风几乎都逃不过气象卫星的“眼睛”。卫星云图对于监测和早期发现大风暴和严重灾害性天气是有效的。
制造工艺
①根据有关部门提供的资料,在电脑上制作全国气象形势图(即天气预报节目的背景图)。
②主持人站在一块蓝屏前“点”讲解天气(主持人掌握每个区域位置的秘诀只有一个——死记硬背)
③影视中心进行图像合成,在电脑上将流程②中的蓝屏替换为流程①中的图表;
④影视中心将完成的节目传送到中央电视台。
现代科学技术的发展为现代的天气预报提供了先进的装备,先进的气象卫星、遍布各地的雷达站网络,以及能运算复杂天气模型的强大的超级计算机系统,使天气预报的准确性大大提高。
20世纪70年代末,日本使用了气象卫星,不仅从高空可以收集到各种气象资料,而且使气象部门大大提高了工作效率,还提高了预报的正确程度。电视台的天气预报也由此变得生动而形象:台风眼和它的周围的云层、活动范围、方向、速度等,还有雨、雪区的移动等,一目了然。
美国的领土十分辽阔,它的气象预报系统的规模更大。为了了解世界范围的气象,有四颗气象卫星提供气象信息。有两颗电视与红外线观察卫星,它们的轨道经过地球南北极的上空,卫星上的电视摄影传播云的形状和运动方向,红外照相指示出云层的高度和水汽所含的水分。另外两颗同步气象卫星位于赤道上空对地静止的轨道上,在固定点定时拍摄地球的照片。
此外,有几百个小型资料收集装置设在飞机、轮船、浮筒或充氦气球上。这些收集装置的传感器会自动测出各地的风速、温度、湿度和气压等。还有70多个雷达站遍布全国,对雷暴和旋风进行跟踪。
有一种多普勒雷达系统是先进的气象检测设备。这个系统向周围半径为200千米的各个方向发射波束,通过检测大气中的水滴、草籽、尘土、昆虫等的运动,来测量同地面平行的各个水平面上的风速、风向。它作出的天气预报十分具体:哪一个地方,几点到几点钟将降落多少毫米的雨。如果局部地区在几分钟内将发生突然的气流变向,多普勒雷达系统也能作出相当准确的预报。
另一种激光多普勒雷达——“莱达”,是一种监视地面气象状况的新装置。它装在极地轨道卫星上,每天可测取两次风速。如果有两颗卫星装有“莱达”,这可以监测整个地球的大气状况。采用“莱达”系统以后,可以使7~10天的中期天气预报,同目前的24小时的预报一样准确。航空公司也能从“莱达”获益,因为驾驶员有了详尽的当时的气流图,就可以利用快流风,避开迎头风,既可节省时间和燃料,还可保证飞行安全可靠。
近年来,气象工程中的一项重大突破是风向模拟系统的投入使用。模拟系统用一雷达束对1.6~14.4千米范围内的风向和风速做连续测量,并沿竖直方向每隔100米取一个风速风向数据,每平方千米可采集到上百项数据。在监视器的屏幕上显示出来:一些五颜六色的箭头,以颜色、长度和方向,分别代表那高度、风速和风向。电脑很快地将几小时前输入的数据以及卫星资料作相互比较,在屏幕上显示出当地的小气流的运动,把预报局部小气候的精度提高到前所未有的水平。
设在马里兰州的计算机天气模型,根据从世界各地传送来的气象数据,包括风向、风速、温度、湿度、气压等。从全国650个气象气球的高空测候仪采集到了气象数据,全部集中发送到静止轨道上的工作卫星上,然后从太空发回卫星地面接收站,再由地面站送到气象中心。各地浮筒或机载的收集装置所记录的信息几分钟后便汇集中心,许多电脑神速处理各种数据,从而对当时的天气形势形成一个数学的描述。美国的气象中心每天向各主要预报中心发出2000个这样的报告,再通过它们向各地方机构传送。各地气象台再结合最新的卫星图像与地面测定的数据,结合各自的经验,发布出当地的天气预报。这种预报已相当准确了。