海洋气象观测系统_海洋气象观测体系
1.海洋气象学的研究内容
2.海洋机器人是怎样的?
3.地球上海洋的秘密?
4.全球海洋观测系统的GOOS的任务与实施步骤
5.海洋水文气象观测员是从事什么工作的?
船舶在航行过程中主要观测气压、风、气温、湿度,此外还观测波浪和海雾等,以便对海洋气象和水文部门提供的情报进行检验和订正。有的船舶还常带有为船籍国作顺路观测的任务。船上测定气压的常用仪器有水银气压表和空盒气压表两种。水银气压表应垂直悬挂底舱内,并加装平衡环,以减少震动,避免受直接通风、温度剧烈变化和船舶摇摆的影响。气压读数必须经过一系列的订正后才能算作现场气压,这种订正,水银气压表比空盒气压表繁琐,所以船上多用空盒气压表。近年来制成船上专用的观测风速、风向、气温和湿度的船舶气象仪。它的感应部分安装在驾驶台顶部开阔通风处,指示仪表安装在驾驶台内,可直接读取上述气象要素值,既可测瞬时风速,也可测100秒内的平均风速。各种形式的查算表或计算盘等是查算真风用的。船舶观测波浪、海雾的方法也比岸上的简易。
海洋气象学的研究内容
海洋浮标是以锚定在海上的观测浮标为主体组成的海洋水文水质气象自动观测站。
它能按规定要求长期、连续地为海洋科学研究、海上石油(气)开发、港口建设和国防建设收集所需海洋水文水质气象资料,特别是能收集到调查船难以收集的恶劣天气及海况的资料。
人们在沿海和海岛上建立了海洋观测站,测量波高。海流。海温。潮位。风速。气压等水文气象要素,掌握了这些资料,将会给人们带来更多便利。
扩展资料
一般来说,海洋监测浮标主要结构有浮体、桅杆、锚系和配重组成,功能模块主要由供电、通讯控制、传感器等构成。
水上桅杆部分主要用来搭载太阳能板、气象类传感器和通讯中断等;水下部分搭载水文水质传感器,分别测量水文(波浪、还留、温盐深等参数)和水质(叶绿素、藻类、cod、以及各类溶解在海水里的相关物质浓度)等要素。
各传感器产生的信号,通过仪器自动处理,由发射机定时发出,地面接收站将收到的信号进行处理,就得到了人们所需的资料。
百度百科-海洋浮标
海洋机器人是怎样的?
1、海洋气象的观测和试验。包括海洋气象观测方法的研究、海洋气象观测仪器和装置的研制、局部或大范围海域的海洋气象的调查研究。
2.海洋天气分析和预报。研究海上的天气和天气系统及与其密切相关的海洋现象,包括海雾、海冰、海浪、风暴潮、海上龙卷、热带风暴、温带气旋的机理分析及其预报方法(见海洋水文气象预报、天气分析、天气预报)。
3.海洋和大气的相互作用。在海洋气象学中所研究的海-气相互作用,主要是海洋和大气之间各种物理量,包括热量、动量(或动能)、水分、气体和电荷等的输送和交换的过程及其时空变异,海-气边界层的观测和理论,及大尺度海-气相互作用(见海面气层湍流输送、海-气关系)。
在大尺度海-气相互作用的范畴内,重点研究大气环流和海洋环流的生成及其对应关系,大洋西边界流动(湾流和黑潮)对于其邻近海区的天气,天气系统和气候的影响,热带海洋对局部乃至全球大气环球和气候的影响(例如埃尔尼诺现象),大气中二氧化碳含量的增加和海洋对此过程的作用及其对气候变迁的影响等。在上述领域内,已揭示了海洋和大气的某些现象之间的联系,取得了一批研究成果,这对于长期天气预报和气候预测有重要的价值。
地球上海洋的秘密?
神奇而玄妙的大海,有时水光潋滟,旖旎多姿,但转瞬之间也可能浊浪排空,惊涛拍岸,肆虐的大海会严重威胁潜水人员的生命安全。此外,恶劣的海洋环境、复杂的海况也对潜水人员设下了重重险阻。所以人类十分盼望海洋机器人问世,期待着海洋机器人去攻占海底龙宫的每一个角落。现代科学的发展,已经使制造机器人的理想变成了现实。
世界上第一个设有通讯系链、能够独立工作的海底机器人“逆戟鲸”号是美国研制的。它有5台微型处理机,有着装有5000张胶片的自动摄像机,有着非常完善的声纳装置声脉冲发送器、频闪器以及传感器等设施。这架机器人重2.9吨。它不需要海面工作人员“指导”其行动,但是如果遇到障碍物、摄像机失灵或电路中断等情况发生时,它还得与海面联系,因此,这架机器人在水下工作时每隔10秒钟就向工作船报告一次它的行踪及工作状态。这些报告都在工作船的示波器上显示出来,工作船上的人员可随时了解机器人工作的深度、方向、水温及发动机工作状况,必要时,工作船还可以发出控制指令,例如发动机、摄像机和录音机的关闭、镇重块的释放等。
这架机器人虽诞生不久,却立下了赫赫战功。它潜水达130多次,最深处到达海底5300米;曾在几百平方英里的太平洋洋底遨游览胜,拍下了那里的全部海底地形图;它也曾探察过意大利海岸附近的海底火山的概貌;连沉在9000英尺深处的一只可口可乐罐头盒子都没有逃出它的火眼金睛。
现在,日本又出现了海洋气象观测机器人。海洋观测机器人系统由海上浮标气象观测站和地面无线电接收中心组成。它能够在环境十分恶劣的大洋上全年实施无人化作业,并及时向地面通报观测和搜集到的气象数据资料。机器人的浮筒部分为钢质,直径达10米。立于浮筒中央的塔杆高出海面7米多,塔杆上装有气象观测器。这种机器人可用测链、钢缆和重达500多千克的铁锚牢牢地系留在水深数千米的海洋上。它的电源由空气湿电池和强碱蓄电池联合提供。这种机器人每三小时自动通报一次观测情况。观测的主要项目有风向、风速、气压、气温、日照量、水温、含盐量、流向、流速和波浪等。它先把观测到的气象和海况资料转换为数字,而后通过无线电装置自动播发出去。机器人发出的电波,由设在地面的无线电接收中心接收,然后再输入信息转换系统通报给有关部门。
日本又在继续研制一种根据指令可在海上自行移动的浮游气象观测机器人,以便更加全面地搜集海洋的各种气象和海况资料。
海洋机器人是由海洋深潜器发展而来的。海洋深潜器到目前为止大致经历了5个阶段,其中前4个阶段都是载人的。第五代深潜器是无人深潜器,多数是系缆的,少数是无缆的,都由水面工作母船来遥控。第五代深潜器实际上已经进入了海洋机器人阶段。海洋机器人也分为缆控海洋机器人和无缆遥控海洋机器人两种类型。至于怎样对海洋机器人更好地进行水下遥控,现在还有许多问题等待人们去研究。
全球海洋观测系统的GOOS的任务与实施步骤
我们生活在地球上,在太阳系的九大行星中,你也许可以说出我们这个“老家”的许多特点,但是有一个很不寻常的特点你可能反而不会注意,那就是只有地球表面具有的温度,能使水同时以固态、液态、气态3种状态存在。而且,地球还是太阳系中惟一拥有巨大海洋的天体。这个连成一片的海洋的一些统计数字让你吃惊:总面积为362亿平方千米(占地球总面积的70.8%),平均深度3795米,海水总体积达137亿立方千米。难怪有人说我们所在的星球与其叫“地球”,不如称它为“水球”更合适。
覆盖在地球表面的这层连续的海水,根据它们的分布特点,可以分成太平洋、大西洋、印度洋、北冰洋。剩下不到20%的大陆地区,有地表水断续分布,这就是江河湖泊。在地表以下的土壤和岩石里,还存在着连续不断的地下水。地表水、地下水互相连接,最后又都跟海水相通。这样,地球表面包括地表以下一定深度的水,实际上构成了一个完整的圈层。这就是水圈。
几乎可以百分之百地肯定,地球上的生命起源于海洋,海洋是生命的摇篮。现在海洋中还有20多万种生物,依靠光合作用,它们每年的生长量约占全球生物量的43%。
但是,在人类诞生以后的绝大部分时间里,人类的活动始终局限在陆地上,海洋对他们来说似乎是个不可逾越的“水的王国”,是位神秘莫测的“陌生巨人”。
人们对海洋的探索长期以来停留在很低的水平上:观察海浪的起伏,记录海潮的涨落,尝尝海水的味道,观测近海的深浅……直到不久以前,人们对于海洋的认识依然十分肤浅,甚至可以说,地质学家对于海底表面的了解,比天文学家对于月球表面的了解还少得多。
近代海洋学的奠基人是美国学者莫里。他原本是一位美国海军上尉军官,30岁那年的一次事故使其腿瘸致残,这对一个年轻人来说实在是极大的不幸,但他却把它变成了好事。伤残以后,莫里被派去从事海图和仪器的保管工作,这个闲职不仅没有使他灰心丧气,相反使他得到了一展身手的机会,从此他全身心地投入到了有关海洋的研究工作中去。
莫里是最早研究海洋与气象相互关系的学者。他收集了大量关于风、海流、水温等观测记录,于1846年编写了《海洋气象观测报告》第一卷。第二年,他又绘制出精确的导航图,图上详细地记载了风力、风向、信风、赤道无风带、表面水温,以及不同月份的暴风次数、雨和雾的频度等。1855年出版的《海洋自然地理学》是莫里的代表作,它第一次系统地叙述了海流、风、盐度、温度、海洋与大气关系等自然地理现象,成为近代海洋学的第一部重要著作,莫里也因此成了近代海洋学的奠基人。
莫里的重要贡献之一是对海流进行了系统、详细的记录和研究。具体来说,他特别研究、论述了墨西哥湾暖流。这条海流最早是由美国学者富兰克林于1769年发现并进行研究的。莫里研究了这条海流之后,在《海洋自然地理学》一书中形象地写道:“在海洋中有河流,它在最大干旱的情况下不会干涸,在最大洪水的情况下不会溢出两岸。这河流的两岸和河床是由冷水组成的,而河里的流水则是温水,墨西哥是它的源头,北冰洋是它的河口。”
陆地上任何地方也找不到这样雄伟的水流。一般海流的宽度为几十千米至几百千米,深度是几百米,流速每分钟几十米,流量可达每秒几百万、几千万立方米。墨西哥湾暖流不仅比陆地上任何一条江河都大得多,而且也是海洋里“河流”的冠军。它在佛罗里达海峡处的水流量为每秒2600万立方米,接近切萨皮克湾时已达每秒八九千万立方米,相当于几千条密西西比河的入海水流量。
海流是怎样形成的。经过科学家多年来的大量观测研究,总算基本上弄清了它们的成因和某些规律。地球上海流的分布主要受盛行风、海水密度、地球偏转力、海底地形、海岸轮廓和岛屿等的影响,按它们的成因,海流可分为风海流、密度流、梯度流、倾斜流、补偿流;按它的水温高于或低于所流经的海区,海流又分为暖流和寒流。
在海流研究方面,瑞典海洋学家埃克曼做出了最大的贡献。他首先提出了风海流(漂流)理论,并在1905年设计制造了能同时测量海水流速和流向的“埃克曼海流计”,这种仪器以后经过3次改进,一直是测量海流的主要工具。他还研究了密度流、梯度流、深层流、混浊流等理论。埃克曼以研究海流动力学闻名于世,是物理海洋学的先驱。
世界各大洋近表层的一些主要海流都属于风海流。风吹水动,这里的水流走了,邻近的水过来补充;如果风总是朝着一个方向吹,它就会推动海水顺着风的方向在海洋里作长距离的远航,连续不断,这就是风海流。比方说,北半球盛行东北信风,南半球盛行东南信风,这些风都是定向风,有了定向风就有定向流,所以一般的风海流都是有规律地流动的。
海流还受地球自转的影响。由于地球在不停地自西向东旋转,地球上运动的物体就将受到一个惯性力的作用,这个惯性力最早由法国数学家科里奥利于1835年开始进行了研究,为此又叫做科里奥列力。拿地球这个自西向东自转的旋转体来说,在科里奥利力的作用下,北半球运动的物体将向右偏,南半球运动的物体将向左偏,所以北半球的钢轨右方磨损较大,河流右岸冲刷较多,南半球则正好相反。同样的道理,北半球海洋的表面流向总是偏于风向右面45度,形成顺时针方向的环流,南半球海洋的表面流向总是偏于风向左面45度,形成逆时针方向的环流。
海水受风和地球自转的影响形成的风海流,深度一般不超过数百米,属“表层海流”。表层海流往往凭直观就能感觉出来,用普通海流计即可测定流速和流向。但是,要直接了解深层的海流可不那么容易。过去有人认为,既然海洋里的大海流差不多都是风吹起来的,而所涉及的深度又不过几百米,那么再往深处,没有风的作用,当然就不会有海流,那里只是死水一潭。可这又很难想像,特别是当人们了解到海洋的深处也存在着生物之后,更使人相信深层的海水也是流动的,否则怎么能向海洋深部输送氧气和养料,以满足海底生命的需要呢。
接着出现的问题是:海洋深部的海水算什么流动。最容易使人想到的一个因素是海水的密度。由于温度和含盐量(盐度)不同,海水的密度也不一样,密度大的海水流向密度小的地方,这样就形成了与风海流相应的密度流。
深层海水是怎么流的。早先说法很不一致。由于缺乏实际观测资料,一时难以测定,大家各持己见,谁也说服不了谁。深层海水的流动太微弱了,当时还没有足够精密的仪器可以用来测定它们的流速和流向。
进入20世纪以来,科学家们开始想到用间接的方法,比如根据海水密度的大小以及它的水平分布和垂直分布,来分析和追踪深层海水究竟流向何方和流至多远。随着海洋观测资料,特别是海洋深层温度资料的增多,深层海流的研究工作也有了长足的进展。海洋学家斯费德鲁普和乌斯特等,根据海流动力学理论以及对海水温度、盐度、溶解氧等资料的分析,提出了更符合实际的海洋深层环流模式。
在南极地区,人们发现了一个深入南极大陆的威德尔海。冬季,这里低温、高盐的表层水密度要比它下面的海水密度大,于是它就一直下沉到海底,沿着海底北上,充溢于三大洋的大部分海底,并保持着来自威德尔海的低温高盐特性。在大西洋,这种南极“底层水”可以北上到纽芬兰浅滩;在太平洋,它到达阿留申群岛;在印度洋,它来到孟加拉湾和阿拉伯海。
在北大西洋,人们也找到了一个高密度海水区域——挪威海,不过它与大西洋之间有海槛分隔,所以当挪威海的下层高密度水越过海槛俯冲溢出时,会同周围的海水发生强烈的混合作用,使其密度降低,不能沉到大西洋底部,而只能位于南极底层水之上的1500米至4000米之间,并向南扩散,形成所谓的“深层水”。深层水可以向南越过赤道,进入南大西洋,然后围绕南极大陆流动,来到威德尔海,成为南极底层水的补偿流;它也可以绕过好望角进入印度洋,再由印度洋进入太平洋西部北上,做顺时针回转,越过赤道,从太平洋东部南下,在南极海区上升,同样成为南极底层水的补偿,从而形成一个巨大的南北间的海洋深底层环流。
除了威德尔海和挪威海内有海水下沉,其他海区也有海水“辐聚”下沉,这就是南极辐聚和亚热带辐聚。南极辐聚围绕南极大陆,这里的海水密度不是很大,因而这部分海水只能下沉到800米至1500米的中层,叫做南极中层水,它也像南极底层水一样自南向北扩展,充溢于各大洋的深层水之上。亚热带辐聚下沉的海水密度更小,只能沉到表层水之下、中层水之上,称为上层水。
就这样,整个海水被分成了5层:表层、上层、中层、深层、底层。除了表层海流主要是风海流,其余各层基本上是密度流。各层海流之间,也像表层海流一样,首尾相接,连绵不断,构成一个完整的海洋环流。
1957年,英国和美国的海洋学家组织了一次联合海洋考察,获得了许多更直接的证据,证明深层的海水确实是这样流动的,从而推翻了长期以来盛行的大洋环流的理论。他们主要用了英国海洋学家斯瓦洛发明的特种浮子,适当重量的浮子能在预定深度的海水里漂浮前进;根据它所发出的超声波信号,即可得知它的运动方向和速度。另外,用它还可同时进行温度、盐度以及深度的测量。
各种海流有各自的运动方式。13年,美国发射的“天空实验室”航天站上的第一批宇航员,用遥感仪器发现墨西哥等海岸水流中有大涡旋,接着又在美洲东西海岸,澳大利亚、新西兰、非洲和夏威夷群岛等地的附近海域发现有大涡旋存在。这些涡旋是海流之间海水交换的渠道,它们大大小小,形形,有人称之为“涡流大观园”。“涡流大观园”的发现被认为是20世纪50年代以来海洋学的重大进展之一。
所有的海水都在一刻不停地运动之中,海浪、海潮、海流……海流对地理环境和人类活动都有重大影响,它是航行的助手,又是旱涝预报员和气候调节器。墨西哥暖流像一道巨大无比的暖气流,横越大西洋流向寒冷的北冰洋,一路上春意盎然,给极地带来常年不冻的良港,给高纬地区带来暖和的冬天。还有,寒流和暖流交汇的海区——辐聚区,营养丰富,水温温和,鱼虾汇集,几乎都是世界上最著名的大渔场。
海洋水文气象观测员是从事什么工作的?
该模块主要涉及到食物链、有害藻华及其与海洋生态系的关系等问题。
海洋环境的变化可以影响到海洋生物的组成和生物习性,这种变化又可通过食用海洋生物直接影响到人类,还可影响环境。该模块的目的就是要开发一种系统以便监测用于描述海洋生态学及其变化所需的各种生物、化学和物理参数,并对这类变化进行预报。这些资料将用作观测系统设计和实施的基础。 该模块的目的是确定GOOS改进提品与服务的手段,提高终端用户所用产品与服务的数量与价值。现在已完成的工作有:①考察了海洋气象学和海洋学服务;②总结了用户对这类服务的信息和资料管理的需求;⑧评估了现有服务中的不足之处;④绘制了现有服务的发展趋势图;⑤对服务方法、标准、资料分析、通讯和传输、模拟和预报、产品开发和产品分发提出了改进措施。在该模块中,提出了对发展中国家的培训,以帮助他们建立业务服务和产品利用手段。
以上各模块既强调了规划中最先进部分的实施,也强调了对区域性小型GOOS的设计。但这些模块并不是逐个地加以实施,这只是促进规划实施的手段,不是实施综合性GOOS的框架。
从事的工作主要包括:
(1)使用海洋水文、气象观测仪器,进行海洋水文气象要素的观测和资料整理;
(2)操作自动填图机或手工进行水文、气象图的填写;
(3)使用卫星接收机,进行卫星资料的接收和一般处理。
下列工种归入本职业:
海洋水文气象观测工(**),船舶测报员(**),海洋气象卫星接收员(**),海洋水文气象填图员(**)